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The convergence to the numerical solution of the stationary Euler
equations in two and three dimensions is studied. The basic iterative
algorithms are Runge-Kutta time-stepping, GMRES, and a modified
GMRES method. Convergence acceleration is achieved by two pre-
conditioning techniques: residual smoothing and multigrid iteration.
The preconditioners are such that they increase the propagation of
smooth ertor modes out of the computational domain, Runge-Kutta
time-stepping and the modified GMRES method guarantee this wave
propagation. The results from a number of numerical experiments are
reported. ) 1994 Academic Press, Inc.

1. INTRODUCTION

The numerical computation of the steady state solution of
the equations of compressible fluid flow is a time-consuming
process, There is a great interest in the aerospace industry to

obtain reliable and fast solutions of these equations. One

way of cutting the time that an engineer has (o wait {or the
solution is to buy a [aster computer. The other way is to
design more efficient numerical algorithms. Here we will
discuss and test some improvements of the algorithms for
solution of the stationary Euler equations in two and three
space dimensions {2D and 3D).

The Euler equations are a system of first-order nonlinear
partial differential equations (PDEs). The numerical solu-
tion of the PDE problem is often obtained by an iterative
method such as Runge-Kutta time-stepping (RK) [16], or
the generalized minimuin residual method (GMRES) [23].
The convergence of these methods can be explained as a
combination of two clfeets [10, 19, 18]:

« wave propagation of smmooth error modes out through
the open boundaries,

« damping of the amplitude of oscillatory error modes.

The algorithms we advocate here enhance the wave
propagation. Theoretical investigation of linear model
problems support this view. Substantial improvements in
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convergence rate and increased robustness are obtained in
numerical experiments. The gain in efficiency of the algo-
rithms is probably also due to better damping of oscillatory
modes, but this is more difficult to verify theoretically.

A modified GMRES (mGMRES) method introduced in
[11,12] is tested and compared with the original GMRES
and the very successful RK. One advantage of GMRES,
mGMRES, and RK in comparison to other iterative
schiemes, such as the CGS algorithm [9], is that the residual
usually has a smooth behavior as the iterations proceed.
This property may be crucial for the convergence of strongly
nonlinear problems with sign restrictions on the variables.
Another advantage is that only residual evaluations are
needed in each iterative step. GMRES and mGMRES also
have a local optimality property. A disadvantage with
GMRES and mGMRES is the extra storage requirements
compared to RK. Another problem with GMRES is that the
residual for some problems ceases to decrease after a num-
ber of iterations. The remedy is to introduce mGMRES or -
a proper preconditioner. GMRES has been applied to many
other flow problems, see, e.g., [28, 3, 4, 26].

We consider two kinds of preconditioning techniques for
the Euler equations: residual smoothing and multigrid itera-
tion. Both of them improve the propagation of smooth error
waves. The residual smoothing technique in [5] is chosen.
It contains the original one [15] as a special case and has
better convergence properties and is less sensitive to
parameters, Multigrid acceleration has been employed
to reduce the computational work in many fluid flow
simulations, see, e.g., [22, {4, 28, 15, 20]). The multigrid
parameters arc sclected such that the wave speed of smooth
crror modes increases.

Section 2 of this paper describes the basic iterative
methods RK, GMRES, and mGMRES. In Section 3 the
influences of the iterative methods and the preconditioning
process on the wave propagation are discussed. The results
of the numerical experiments with the Euler equations are
reported in Section 4. Finally, conclusions are drawn in
Section 5.
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2. BASIC ITERATIVE SCHEMES
Let v denote the vector of m unknown variables and let

ru)=0 (2.1)
be the system of m nonlinear equations obtained after dis-
cretization of a first-order PDE such as the Euler equations
(see (4.1)). The most popular iterative method to determine
u* satisfying (2.1} for compressible flow problems is
Runge-Kutta time-stepping suggested in [16]. One step
from 7 to n+ 1 of the RK (k) algorithm is as follows:

u(°)~‘=u",
for j=1tok
u D = oy der(u D), (22)

un+l = u(k).

The time-step 4t is proportional to the spatial step 4 so that
At r(u)=0(1)and a;, j =1, ..., k, have some predetermined,
fixed values. The residual at step n4 1 can be written

= + B, W frr(u™))--- )k

Bj=ocj 4.

"+ Bar(-- o3

Since we want r" to vanish as quickly as possible an alter-
native to constant 8, is to let them solve

min |7 ). (24)

Bii=1,..k

The norm here and in the sequel is the Euclidean vector
norm and its subordinate spectral matrix norm. The
problem (2.4) is then solved by the Gauss-Newton method.
After linearization the coefficients z; with definition

(2.5)
are given by

g

r+z

min
2 i = by

(2.6)

This minimization procedure is the basis for the restarted
GMRES(k) algorithm [23] for solution of the linear system

Jou" = —r",
un+l . un + 5un

Sut e K, (J, r")y=span{r", Jr"

(2.7)
s s JET L

The Krylov subspace of dimension k is denoted by K.
The iteration (2.7} is obtained in [4] by applying Newton’s

method directly to " ! =0 and then solving the system of
linear equations by GMRES, In [12] the algorithm (2.7) is
interpreted as an integration in time of

du

- (2.8)

= oty r(u).

This is obviously also possible for (2.2). Runge-Kutta time-
stepping can be implemented by lincarizing (2.2) so that

k
wWrl=wr 4 Y o (2.9)

i=1

with constants z,. This is equivalent to solving the system of
linear equations in (2.7) by Richardson iteration.

In numerical experiments which deal with linear systems
modelling the Euler equations in a channel in [11, 12] the
convergence rate of GMRES(k) is sometimes rather poor.
A modification of GMRES(k) as introduced in [11,12] is
more successful.

In the modified algorithm, mGMRES(k), the coefficient
zyin (2.5) is frozen at a value supplied by the user. It follows
from the analysis in [19, 12] that z, (and «, in (2.2) since
z,=ua, A1) is responsible for the propagation of smooth
error modes. The iterative process for the smooth part
approximates the time evolution of the hyperbolic equation
(2.8). In the experiments with GMRES(k) in [12] a, varies
rapidly and is often close to zero resulting in slow con-
vergence, This is avoided in mGMRES(%). The remaining
k — 1 coeflicients z; are chosen to minimize the linearization
of r"*lin (2.6).

One step of mGMRES(k} is

Lo r=r), f=Ir"l, s =1/8, vi=r"cy,
2. forj=1tok
fori=1toj h,=vlJv,
j+1_‘]v Z hr; i
hj+lj=“vj+l"’
Vet =V aly g (2.10)
L
G =R\, Z ¢ity,
end for
3. Solve
ymln iHey — Peyds
1 el

4 W' =u"+ V.
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In the algorithm e, denotes the first unit vector (1,0, ..., 0)T
and

k3+1)y=k
HkERi-P)K’

VkERMXk,

(Hk)g: hy_}'a
Vk= (vls V?, ey vk)s

ce RE

In step 2 an orthonormal basis of K. (J, r") is generated by
Gram-Schmidt orthogonalization as suggested in [23].
The minimization problem in step 3 is solved as in [12] by
first eliminating the linear constraint and then computing y
from the reduced system in a standard fashion [1, p. 592].
There is a linear relation between z in (2.5) and y in (2.10)

z=Cy (2.1

derived in [21]. In (2.10) we use only the first row ¢ of C.

The GMRES(%) algorithm differs from {2.10) in steps 2
and 3. There is no need to update ¢ in the j-loop and the
linear least squares problem to be solved has no linear
equality constraint.

mGMRES(k) has good wave propagation properties
while GMRES(k) may exhibit poor convergence behavior
for smooth error modes. Both methods determine the free
coefficients z; (or «,) adaptively. For problems where the
wave transport is unimportant to the convergence rate
GMRES(%) 1s expected to be the preferred method since it
has one more coefficient to vary.

The vector Jv, in (2.10) is approximated as in [4] by

(2.12)

Jv; =0 " Hr(u"+ ov,) —r(e")),
where o is sufficiently small. The Jacobian J is never
calculated explicitly. The most expensive part in {2.10) 1o
compute is the residual rin step 1 and (2.12). In (2.10) £+ 1
such computations are necessary. This number can be
reduced to & for linear problems if »” is updated as described
in [23]. It may be possible to use the same idea for non-
linear problems, but with occasional full evaluations of r” in
step 1.

The number of floating point operations to calculate r is
of the order of 100 per component of r. Let m be the number
of unknown variables. Then the number of operations in
GMRES(k} is found in [23] to be about 2mk? plus the k
computations of Jv;. Slightly more operations are required
by mGMRES(k). ' ‘

Since

100m(k + 1) > 2mk?,

the computational cost is dominated by the evaluation of r.
This conclusion is confirmed in the numerical examples in

Section 4, where the time per iteration using (m)GMRES(3)
is about % of the time of RK(3).

The RK(k) algorithm {2.2) only needs & computations
of r and a total of about 100mk operations.

When m is very large, m » k, the storage requirements of
algorithm (2.10) and (2.12) are approximately m(k + 3)ina
straightforward implementation. This is a disadvantage in
comparison to RK(k) in (2.2), where space for only three
m-vectors is needed in the primary memory independent
of k. Therefore, & must be kept small in (2.10). The con-
vergence to the steady state solution is slower for small k
[12], but the risk of stagnation because of lost
orthogonality between the v-vectors due to the round-off
errors is reduced [27, 17]. Problems with slow convergence
are solved better by the introduction of an efficient pre-
conditigner than increasing k.

The reason why mGMRES(k) represents an improve-
ment of GMRES(k) for first-order PDEs is that wave
propagation properties are guaranteed in mGMRES(k) by
z, # 0. This is analyzed in [ 11, 127 and 1s discussed further
in the next section. In [ 7] a combination of GMRES(k) and
mGMRES(k) is tested by letting y in step 3 satisfy an
inequality constraint

cTyzz,.

3. PRECONDITIONING FOR IMPROVED
WAVE PROPAGATION

It is well known that the efficiency of RK(k) and
GMRES(k) can improve dramatically by preconditioning
of the problem (2.1). Here we will discuss two techniques
that enhance the propagation of smooth error modes
out through the open boundaries of the computational
domain: residual smoothing and multigrid iteration. The
implicit—explicit residual smoothing algorithm described
here is developed in [5, 6] and extended to 3D and tested
for simple 3D problems in [25]. The multigrid scheme is a
V-cycle, see [2; 13, Section 4.1 ], with extra smoothing itera-
tions on the coarse grids. We show in this section by Fourier
analysis how the wave speed of smooth modes is increased
by these technigues.

In order to understand the effects of the preconditioning,
let us consider the model problem

au,+bu,=f (3.1
in the (x, y)-plane. Discretize (3.1) on a grid G,
G={(uh vhY|p,veZ},
{(peh, vh) } (32)

Z = {the integer numbers},

by, e.g., the second-order accurate centered difference
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approximation. Let fand the initial guess #® have compact
support and iterate with RK(%) (2.2), GMRES(k), or
mGMRES(k) (2.10). Then it suffices to study (3.1} with
S =0 and let 4" be the iteration error after » steps.

As in [19, 12] the error " can be written on G in (3.2)
using its Fourier representation

= | expliGu+ &) (8 &,

E=(¢, &),
D=[—njh, njh]x [ —n/h, n/h].

(3.3)

The smooth part of ], is defined by the low wave num-
bers &:

()5 =] expliléunt &) (@) de,

D0={‘5isf=la2| |éi|"~<~§max}! émax=0(1)'
Let the time-step A¢ in (2.3) be
At =kh, k=0(1). {3.4)

Then it is shown in [12] that with RK(k), GMRES(k), or
mGMRES(k) and «, defined by (2.3) and (2.5)

(5 )s=| expl(i(E p+Evyh)ant(&) dd
Dy

| explil e +aywa)

+ &a(v+ oy kb)) h) @(E) dE
(3.5)

= (u:+a:[rca.v+mxb)5'

The interpretation of (3.5) is that the smooth part of u at
step # has been propagated on the grid by —a,ka in the
x-direction and —a, kb in the y-direction. The distance that
the wave moves on G per step depends on o, in the iterative
method, the k parameter in (3.4}, and the coefficients 4 and
b in the differentiat equation (3.1).

After a sufficient number of steps the smooth error modes
have been expelled from a finite computational domain by
wave propagation, provided that the numerical boundary
conditions allow outgoing waves to pass without reflection.
The smooth error modes are not damped very well by
Krylov subspace methods. In RK(k) and mGMRES{k) a, is
a constant parameter different from zero. In GMRES(%) the
wave propagation property of smooth modes is not always
present, since o, may tend to zero.

The multigrid V-cycle is analyzed with the same Fourier
technique as above in [19, 18]. The iterative scheme used as

a smoother is invoked on all grids, also the coarsest. This
is common practice in compressible flow computations.
Let p and ¢ denote the number of presmoothing and post-
smoothing iterations, respectively, and let / be the number
of grids in the V-cycle. The step-size # is doubled when
descending from one grid to the next coarser grid. Then it is
shown in [18] for RK(k} that under certain assumptions

+1
(u:w )S = (u;: +a1xxa,v+a]xxb)5’

where

1=(p+@2'—1). (3.6)
Even for a small number of grids, a substantial increase of
the wave speed by a factor y is the resuit of one V-cycle.
Multigrid iteration with GMRES(k) as the smoother is
more difficult to analyze, but numerical experiments in [18]
indicate a behavior similar to (3.6).
With the implicit-explicit residual smoothing algorithm
in 2D the preconditioned 7 is obtained as
Pr=aT ' TS (3.7)
This 7 then replaces r” in the iterative schemes in Section 2.
The tridiagonal matrices T, and T, are such that

ut=(TwU};=(1_"ﬁ6i) Uy w=x0ry,

where 62 is the second difference in the w-direction. Since T,
is tridiagonal it is easily inverted in (3.7). In 2D £ is chosen
to be

f=(a2—1)/4.

The matrix Sin (3.7) is defined by
u;=(Sv);=(1—y(62 + 5i) + 555:5?,) v,
The parameters é and y are

y=(ax—1)/4,
d=(a—8y—1)/16.

The boundary conditions for §2 are of Dirichlet type. In the
implicit smoother in [15] é=vy=0.

In the 3D version the right-hand side of (3.7) is
premultiplied by T ' and additional terms are needed in S
to balance 7' Then S will be such that

u;=(Sv);=(1— Y(‘Si + 55-'*' 6:)
+ 5(5i5f, +6262+ 5i5§) — Sﬁiéﬁéz) v,
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The parameters are

f= (= 14,
y={(x—1)/4,

3= (2 — 8y — 1)/16,
e=(a®—486 - 12y — 1)/64.

For a detailed discussion of the algorithm see [5, 6]. Apply
the implicit—explicit residual smoother (3.7) to the model
problem (3.1} with f=0 and RK(k), GMRES(k), or
mGMRES(k} as the iterative method. Then using the
Fourier representation (3.3) one can show that

(0 )5 (] 1 g an s )5+ (38)
The preconditioning {3.7) increases the speed of the smooth
waves by the factor o (cf. (3.5) and (3.6}). The choice of
parameters fi, 8, and y (B, y, 6 and ¢) in 2D {3D) is such that
7 in (3.7) is close to +" for large wave numbers &, For small
[[£]] both the wave propagation and the damping properties
are improved in the iterative process.

A well-known and simple preconditioner is “local time-
stepping.” The idea is to let A1 be as large as possible in each
computational cell based on a tocal stability criterion. The
result is a diagonal scaling of the residual,

# = Dr",
© (39)
D=diag{k,, K2y s K }»

where m is the number of equations, cf. x in (3.4). This can
be regarded as an attempt to make the maximum wave
speed equal in all cells.

We have found in this section that for a model problem
(3.1) RK(k) and mGMRES(k) have good wave propaga-
tion properties. Moreover, the multigrid V-cycle and the
residual smoothing algorithm increase the wave speed.

4. NUMERICAL EXAMPLES

The convergence of the iterative algorithms in Sections 2
and 3 to the solution of the stationary Euler equations is
studied in numerical experiments in this section. In 2D the
geometries are two channels and a wing profile. In 3D the
solution is computed in a channel and around a wing. The
number of iterations and the total CPU-time are compared
for RK(3), GMRES(3), and mGMRES(3) combined with
different preconditioners. The number of stages for the
GMRES-methods must be low in order to reduce the
storage requirements. There is a reasonably eflicient
RK-algorithm with three stages; see (4.4). For these reasons
and for a fair comparison we have chosen to let all the

methods have three stages and therefore three acceleration
parameters «,. There exist RK(5) methods that sometimes
are more efficient then RK({3) but also (m)GMRES(5) often
beats (m)GMRES(3) [12]. The comparisons are made in
the same environment and the relative difference between
the methods is of greater interest than the absolute measures
of their performance.

The stationary Euler equations of compressible fluid flow
are in 3D:

(pu)+ (pv), + (pw). =0,

(p1” + P)x + (puv), + (puw), =0,

(pvu) .+ (pv* + p), + (pow). =0,

(pwu), + (pwo), + (pw’ + p). =0,
(pEu+up), + (pEv+uvp), + (pEw+ wp),=0.

To close the system, we need the perfect gas law for the
pressure

p=(y—1) p(E— (1 +v* + w?)/2), (4.1)

where y=1.4.

The density is p, E is the total energy, p is the pressure,
and the velocity vector is {u, v, w)!. The 2D version is
obtained by letting w =0 and &(-)/dz=01in (4.1).

The basis for this investigation is the computer code
described in [24] for numerical solution of the stationary
Euler equations in 2D and a code developed from an early
FLO-program by A. Jameson for the corresponding 3D
problem. The single grid RK time-stepping part of the 3D
program is essentially the original FLO-implementation.
The discretization in 2D and 3D is achieved as in [16, 157,
ie., a finite volume approximation of the first derivatives
leading to a second order centered difference approximation
on Cartesian grids with constant step size and a blend of
second and fourth differences as artificial viscosity. The
latter part of the artificial viscosity can be written for the
model equation (3.1},

(6%u+ 6%u), (4.2)

NS
Bl I

where A is proportional to |[(a, b)| and & is a parameter. The
numerical boundary conditions in the far field are based on
Riemann invariants to permit outgoing modes to cross the
outer artificial boundary without severe reflections. This
spatial discretization defines r(u) in (2.1).

The implicit—explicit residual smoothing is implemented
as described in Section 3. The multigrid algorithm is the
FAS scheme [2; 13, Section 9.3]. In the cell-centered finite
volume discretization one cell on a coarse grid corresponds
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FIG. 1. The grid of the 2D channel with a bump. The isobars of the solution with M, = 0.5 are plotted.

to 4 (8) cells on the next finer grid in 2D (3D). The restric-
tion from a fine to a coarse grid is therefore determined in
2D (3D) as an area {volume) weighted average of the 4 (8)
vaiues of the cells on the fine grid that combine to one cell
on the coarse grid. The prolongation back from the coarse
to the fine grid is obtained by bilinear (trilinear) interpoia-
tion in 2D (3D). Care is taken to ensure that the smoothness
of the interpolated corrections is preserved at the
boundaries of the computational domain.

The RK (k), GMRES(k), and mGMRES(k) methods are
implemented as in (2.2) and (2.8). The termination criterion

is
(’"” ,. )2)”2 =l /m<e.

Usually only the residual of the first equation of (4.1) is
estimated, but (4.3) is more reliable and suitable
for GMRES.

There is a conflict between the accuracy of the converged
solution and the number of iterations necessary to obtain
that solution. Given the method of discretization of our
equations and the treatment of the numerical boundary

7

i

(4.3)

=1

TABLEI

Convergence Comparison for the 2D Subsonic
Channel with a Bump

RK(3) GMRES(3) mGMRES(3)
No.ofiter. CPUs  No.ofiter. CPUs  No.ofiter. CPUs
B 4712 144.39 b b 1294 57.83
RS 839 31.81 S S 347 19.07
MG1 280 26.82 263 30.38 180 20.88
MG2 98 22.09 50 15.41 61 18.68

conditions, the accuracy is affected by the computational
grid, the artificial viscosity (4.2), and the termination
criterion (4.3). The truncation error in the approximation of
the first derivative terms in (4.1) decreases with finer grids.
Finer grids often imply slower convergence. A small 8 in
(4.2) improves the accuracy but slows down the con-
vergence. Fewer iterations are needed if ¢ in (4.3) is
increased but then the accuracy deteriorates. In our numeri-
cal examples we have chosen to keep the prid fixed and then
determine appropriate values for 6 in (4.2} and ¢ in (4.3)
experimentally so that their influence on the converged
solution is small. In most of our computations ¢ = 1.0E — 3.

The variables in (4.1} and a characteristic length are
scaled so that they all are in the neighborhood of 1. Hence,
r" in (4.3) is non-dimensionalized. Then following the
recommendation in [4], ¢ in (2.12} is taken to be a constant
(o =1.0E — 6 in our case).

108(|r"|nﬁ))
0.0,
-1.0
-2.04 RK(3)

GMRES(3)
3.0 mGMRES(Q) \ n
0 1000 2000 3000 4000 5000

FIG. 2. A comparison of the convergence histories of RK(3),
GMRES(3}, and mGMRES(3) for the subsonic flow in the 2D channel.



40

10.04

8.0

4.0

2.04

A

1200

0.0 n

2000
FIG. 3. The a, parameter of GMRES(3) for the subsonic flow in the
2D channel.

0 400 300 1600

The parameters a,;, i=1, 2, 3, in RK(3) in (2.2) are

=1, o, =0.6, ;=0.6, (4.4)

The z,-parameter in mGMRES(3) (2.10) (cf.
(2.3), (2.5))

I, =a, dt=At. (4.5)

The number of iterations and the CPU-time in seconds on
one processor of CRAY X-MP are compared for three con-
vergence acceleration algorithms with RK(3), GMRES(3),
and mGMRES(3) as basic iterative methods. The basis for
the comparison is iteration with only the basic iterative
method (B). Then the basic method is combined with the
preconditioning developed in [5] with x =3, sec Section 3
(RS). In numerical experiments [5, 257] the method (3.7) is
not very sensitive to the choice of «. The second convergence

5.0, C !
4.0/ i t
o e
20 b e
ad iRy o
----- st T‘~ o 2
10 tH EIE %
]:;] i
S TTN S i) e Oy
0.0 A S 1
"0 300 600 900 1200 1500

FIG. 4. The «, parameters of mGMRES(3) for the subsonic flow in the
2D channel.
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3.0

204 .

10 20 30

FIG. 5. The o, parameters of GMRES(3} with residual smoothmg and
multigrid iteration for the subsonic flow in the 2D channel.

accelerator is the multigrid V-cycle on three grids (/=3)
with one presmoothing iteration (p=1) on each grid
(MG1). Only a second difference artificial viscosity is
applied on the coarse grids.

Finally, the preconditioning technique in [5] with a =3
is combined with a multigrid V-cycle on three grids with
extra iterations on the coarse grids (MG2). On the coarsest
grid p+ ¢ =10, on the intermediate grid p=¢g =23 and on
the finest grid p=1, ¢ =0. The cost of extra iterations on
coarse grids is small, éxpecially in 3D, and has a positive
influence on the convergence rate. The approach is analyzed
and tested on two grids in [8]. Preconditioning by “local
time-stepping” is used in all four cases.

The first example 1s a 2D channel with solid upper and
lower walls and a bump. In the first four examples the flow
enters the computational domain from the left and leaves to
the right. The Mach number M, is 0.5, the number of cells
is 80 x 24 and 8 in (4.2) is 0.5. The discretization and isobar
lines are plotted in Fig. 1. The comparison between the
different algorithms is found in TableI. In the table S
denotes stagnation of the iteration; i.c., there is no apparent
progress towards a converged solution. mGMRES(3) is
here faster than RK(3) in all rows of the table. The best

TABLEII

Convergence Comparison for the 2D Supersonic
Channel with a Ramp

RK(3) GMRES(3) mGMRES(3)
No.ofiter. CPUs  No.ofiter. CPUs  No.ofiter. CPUs

713 4332 8 S 725 65.77
RS 292 23.27 s 8 299 34.40
MG1 173 27.57 241 44.44 147 29.93
MG2 157 54.26 130 63.57 114 5359
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FIG. 6. The grid of the 2D channel with a ramp. The isobars of the solution with M, =2.0 are plotted.

result is obtained by GMRES(3), combined with residual
smoothing and multigrid iteration with extra coarse grid
smoothing (MG2). The stagnation of GMRES(3) without
preconditioning is illustrated in Fig. 2, where the conver-
gence history of [#7 /\/r; is plotted as a function of n. For
comparison the convergence of RK(3) and mGMRES(3) is
included. The three coefficients in y in (2.10) can be trans-
formed to the Runge-Kutta parameters a,, i=1,2,3, in
(2.3) via (2.11) and (2.5). Then the variation of the leading
parameter a, of GMRES(3) of importance to the wave
propagation is depicted in Fig. 3. After 1400 iterations «,
approaches zero and o, and o, start oscillating wildly. This
is the point where the stagnation phase of GMRES(3)
begins in Fig. 2. For comparison the wa-coefficients of
mGMRES(3) are plotted in Fig. 4. In Fig. 5 the coefficients

of GMRES(3) on the fine grid in combination with MG2
are shown. In both cases «;, has a relatively smooth
behavior. The convergence histories of RK(3} in (2.2} and
(2.9) are indistinguishable in a plot. Both algorithms need
4712 iterations to converge.

The grid and the isobar solution of the next 2D example
is displayed in Fig. 6. The inflow speed M, is 2.0 and a
shock is generated by the foot of the ramp. The number of
cells is 120x40 and & in (4.2) is 0.5. The results are
presented in Table II. Here the multigrid algorithm
(MG1, MG2) reduces the number of iterations but not the
CPU-time. This is probably due to the presence of the
shocks, which are not treated properly on the coarsest grid.
The best alternative is here RK(3) and residual smoothing
(RS). Note that the number of iterations of RK{3) and

|

Y

FIG. 7. The inner part of the grid around NACAOQ012. The isobars of the solution with M, =0.8 and «=1.25° are plotted.
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FIG. 8. The grid on the M6 wing and the symmetry plane. The isobars
of the solution with M =084 and « =3.06° are plotted on the symmetry
plane.
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FIG. 10. The «, parameters of mGRES(3) for the transonic flow
around the M6 wing.

TABLE III

Convergence Comparison for the Transonic Airfoil

RK(3) GMRES(3) mGMRES(3)
No.ofiter. CPUs No.ofiter. CPUs No.ofiter. CPUs
B 1998 266.81 S S 2753 548.12
RS 1212 224.85 1294 336,71 1088 28987
MG1 542 156.41 401 144.35 401 150.14
MG2 82 58.40 62 60.66 81 76.27

mGMRES(3) in MG1 and MG@G2 is almost the same but
RK(3) is cheaper per iteration. With the combination
RK(3) and MG2 the local time-step had to be lowered to
obtain convergence. A diagram of «, as a function of » for
GMRES(3) looks similar te Fig. 3. After stagnation
{n=400) a, is close to zero and a, and o, oscillate. The
x~-coefficients of mGMRES(3) are much smoother.

The next example is a standard 2D test case for transonic
flow around a NACAQ012 airfoil. The angle of attack « is
1.25°, M =08, 8=1.0, and the grid has 193 x 61 cells.
The inner part of the grid and isobars of the solution are
depicted in Fig. 7. The comparisons between different
algorithms are made in Table III. When comparing the
number of iterations RK(3) is not the best basic iterative
scheme, but because the work per iteration is smailer the
total CPU-time is often the smallest. For this example ¢ in
(4.3) was changed from 1.0E — 3 to 1.0E — 6. The number of
iterations for RK(3) and MG?2 increased to 137 but there
was no visible difference in the converged solutions. With
#=05 and #=20 the number of iterations needed for
e=10E—3 was 117 and 69, respectively. This result
indicates that the damping of oscillatory error modes also is
of importance to the convergence rate. The difference
between the solutions on the edge of the airfoil was
noticeable only at the shocks which moved about 0.5% of
the chord.

The first 3D example is the same channel as in Fig. 1
extended by 16 cells in the direction normal to the grid in
Fig. 1. Thus, the number of cells is 80x24x16, The

TABLEIV

Convergence Comparison for the 3D Subsonic
Channel with a Bump

RK(3) GMRES(3) mGMRES(3)
No.ofiter. CPUs  No.ofiter. CPUs  No.ofiter. CPUs
B 3504 214893 S S 1413 1273.20
RS 1077 1013.81 s S 452 591.86
MGl 328 402.33 2212 3238.28. 164 265.24
MG?2 76 20045 33 124.37 52 190.15
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TABLEY

Convergence Comparison for the M6 Wing

RK(3) GMRES(3) mGMRES(3)
No.ofiter. CPUs No.ofiter. CPUs  No.ofiter. CPUs
B 2429 2758.60 S S 2418 3849.15
RS 901 1566.23 697 1750.54 889 2045.26
MGI 8 ) 140 423.88 327 89229
MG2 59 289.90 54 35493 60 403.45

parameter 4 is 0.5 and M, =0.5. As in Table I GMRES(3)
with the most elaborate convergence acceleration is the
fastest method. Stagnation of GMRES(3) in the B and RS
cases is accompanied by small o, and oscillatory «, and «;.
mGMRES(3) avoids the stagnation of GMRES(3) and is
superior to RK{3) in all cases.

The memory requirements of the 3D (m)GMRES(3)
implementation on CRAY X-MP increased by 27 % in com-
parison to the code for RK(3). This is essentially explained
by the need to store three extra vectors,

The last example is another standard transonic test case:
the ONERA M6 wing at o = 3.06° and M, = 0.84. The grid
with 120 x 16 x 32 cells and the isobar pattern at the sym-
metry plane arc depicted in Fig. 8. The parameter 8 is 1.0
and the convergence results are found in Table V. The num-
ber of iterations required for convergence by RK(3) and
mGMRES(3) are almost the same in the cases B, RS, and
MG2 but mGMRES(3) is more demanding in CPU-time.
GMRES(3) and RK(3) with MG1 did not converge. The «,
parameter for GMRES(3) drops down to zero at the begin-
ning of the stagnation phase in Fig. 9. The «, parameters of
mGMRES(3) vary smoothly with # in Fig. 10 (cf. Figs. 3
and 4). By letting ¢=1.0E — 6 the number of iterations
increased to 121 for RK(3) and MG?2, but the calculated lift
of the wing was the same in the first five digits. With #=0.5
the number of iterations was 153 and the lift changed by
0.13%.

5. CONCLUSIONS

A number of numerical experiments with the stationary
Euler equations have been made. The convergence rate for
reaching the steady state solution is improved considerabiy
by techniques that enhance the propagatien of smooth error
modes out from the computational domain. The stagnation
problems with GMRES(3) disappear with mGMRES(3).
The residual smoothing preconditioner in [5] is con-
structed to have an effect only on the smooth waves. When
it is applied the total work for convergence is reduced.
Addition of multigrid iteration also improves the conver-
gence rate, in particular when more smoothing iterations

are performed on the coarse grids. On these grids only the
smooth error modes are represented and obtain an
increased wave speed (and better damping).

mGMRES(3) is often more efficient than RK(3) in terms
of number of iterations but not always if the CPU-seconds
are compared. The extra cost per iteration for nGMRES(3)
compared to RK(3) consists of one extra computation of
r(u) and more overhead. If that could be reduced by a more
efficient implementation then mGMRES(3) would be the
preferred method. However, for the 2D and 3D subsonic
channel flow in Tables [ and IV mGMRES({3) beats RK(3)
also in CPU seconds. The reason is probably the adaptive
damping properties of mGMRES. The experience from
linear problems in [12] is similar. Also mGMRES(3)
appears to be more robust than RK({3) in combination with
multigrid iterations in our examples (sec the discussion of
the supersonic channel example and Table V). However,
more numerical experiments are needed to assess the merits
of mGMRES(k) compared to RK{k). Such work is in
progress with k >3 and for the Navier-Stokes equations.
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